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We report on experimental observations of a gravity-wave instability forced by
a highly turbulent free-surface Taylor–Couette flow. Bistability and hysteresis are
observed at the bifurcation from a turbulent base state, with an axisymmetric mean
flow, to a turbulent gravity-wave state, with an azimuthal m =1 pattern related to the
mean flow and free surface. We show that the critical Reynolds number at which the
wave state appears is not sharply defined as it depends on turbulent fluctuations.

1. Introduction
Many nonlinear systems present transitions that are affected by the presence of

noise or fluctuations. Of particular interest are bifurcations that occur when the system
is forced by a fluctuating field. Magnetohydrodynamic examples are the dynamo and
magnetorotational instabilities observed in liquid metals, where the velocity field is
highly turbulent at the instability onset (see for example Fauve & Pétrélis 2003 and
Sisan et al. 2004). The role of turbulent fluctuations in these systems seems unclear,
and is in some cases twofold as discussed by Marié et al. (2002). For example, recent
constrained dynamo experiments show that fluctuations are not necessary to explain
the onset value of the relevant control parameter – knowledge of the mean flow
suffices – although they do give the correct saturation magnetic field value (Pétrélis &
Fauve 2001). In the field of fluid mechanics, the existence of finite-wavelength
instabilities in turbulent flows is puzzling. Prigent et al. (2002) report experiments on
both plane Couette and Taylor–Couette flow that show finite-wavelength modulations
of their basic turbulent flows. In a recent paper Ravelet et al. (2004) present
experiments on a highly turbulent von Kármán flow that show a hysteretic bifurcation
for Re ∼ 105. The exchange of stability occurs between mean flows of different average
symmetry, which are actually never realized at any given time. These results are
striking because although bifurcations and symmetry breaking occur on the route
to turbulence, in the limit Re → ∞ the flow is expected to recover the system basic
symmetries (see Frisch 1995). In some aspects these systems behave as low-dimensional
dynamical systems, although they present novel statistics at the transition as discussed
by Ravelet et al. (2004). More generally, the question of multiple solutions in laminar
or turbulent flows remains open. At low Re, up to 25 different laminar states in
Taylor–Couette flow for a given rotation rate have been reported by Coles (1965).
Other examples of systems that present hysteresis and finite-amplitude instabilities are
tornadoes (Shtern & Hussain 1993), vortex breakdown (Billant, Chomaz & Huerre
1998), and flows above delta-wings and in diverging tubes (for a review see Shtern &
Hussain 1999).
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Figure 1. (a) Schematic drawing of the Taylor–Couette apparatus, partially filled with distilled
water. The Plexiglas outer cylinder is stationary and the stainless steel inner cylinder rotates at
an angular rotation rate Ω . Also shown are the wire gauge for liquid level measurements and
both the pressure and ultrasound velocimetry profiling (UVP) probes. (b) Top view showing
the UVP geometry. The dashed line shows the ultrasonic beam direction, at angle with respect
to the outer wall normal of γ = 13.6±0.5◦. The minimum cylindrical radius that can be probed
is ro = 5.2 ± 0.2 cm.

In this paper we report the experimental study of a transition observed in a free-
surface Taylor–Couette flow at Re ∼ 106. A highly turbulent base state, for which the
mean flow is axisymmetric and thus respects on average the symmetries of the driving
apparatus, bifurcates to a turbulent gravity-wave state, with a mean flow (averaged
in a frame rotating with the wave) that has an azimuthal wavenumber m =1. The
instability is a first-order transition in the sense that it is not a continuous one.
Accordingly, it presents bistability and hysteresis. In the bistable range of parameters
one needs the correct form and level of disturbance to observe the transition. The
wave state grows from a resonant mode of the free surface and gets its energy from
the turbulent background flow. Turbulence is important in the observed transition
in several ways. The transition is noise driven, the main source of noise being the
turbulent fluctuations. In addition, the base state from which the wave state grows
has its properties, including the mean velocity field, determined by turbulence. Finally,
it may be possible that the properties of the inner cylinder turbulent boundary layer
drive the instability, as in other instabilities observed in swirling flows (Shtern &
Hussain 1999).

This paper is organized as follows: The experimental setup is presented in § 2,
and the relevant dimensionless parameters are briefly discussed in § 3. We present
the experimental results on the base-state characterization and the gravity-wave
bifurcation in § 4. The paper ends with a discussion and conclusions in § 5.

2. Experimental setup
The Taylor–Couette apparatus is schematically presented in figure 1(a). The outer

cylinder is Plexiglas with inner radius b = 22.1 cm and a thickness of 3.34 cm. The
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axial length of the available working volume is L = 69.5 cm. The setup is the same
as used in Lathrop, Fineberg & Swinney (1992), except that the inner stainless steel
cylinder is of smaller radius, a = 2.83 cm, which is concentric with respect to the
outer one within 0.013 cm. The working fluid is distilled water, with the temperature
T =24 ± 1 ◦C. Three different quiescent water levels ho are studied, ho =34, 42 and
50 cm. The system is filled using a pump to transfer water from a reservoir. A 2 kW
servomotor drives the inner cylinder, with an accuracy of 1% in rotation rate. The
inner cylinder rotation rate F = Ω/2π is varied in the range 3.6–33 Hz and the outer
cylinder is stationary.

The base-state velocity field is characterized with an ultrasonic velocimetry profiling
technique (UVP) first developed by Takeda (1991) and by imaging of the surface
profile. In addition, both the turbulent base state and the gravity-wave state are
characterized by a wall pressure probe, located at 30 cm above the bottom plate.

The velocity measurements were obtained using pulsed ultrasound Doppler
velocimetry at 4 MHz. The ultrasonic probe position and beam geometry are presented
in figure 1(b). The angle with respect to the outer wall normal, γ , is chosen to be small
enough so that we can probe near the inner cylinder, but has to be large enough to
avoid reflections from it. We stress that this technique gives access to both the radial
and azimuthal components of the mean velocity field, given the condition that one
can measure velocity profiles along the total length of the acoustic beam (Sisan et al.
2004).

The local surface amplitude disturbance, δh, is determined near the outer cylinder by
a wire gauge, which measures the voltage drop Vw , and thus the resistance Rw , between
two thin stainless steel rods. The wire gauge resistance measurements are performed
by adding a Ro = 100 kΩ resistance in series and by measuring the voltage drop Vw

across the two rods with a lock-in amplifier, which drives the total circuit at 2 kHz
with a r.m.s. amplitude Vo =2 V. In general, Rw is related to Vw by Rn = Vn/(1 − Vn),
where Rn = Rw/Ro � 1 and Vn = Vw/Vo � 1 are their normalized values. The stainless
steel rods are 0.8 mm in diameter and 60 cm in length, separated by four uniformly
placed nylon spacers of 3 mm. This wire gauge is placed radially, such that both rods
are at the same azimuthal angle with respect to the rotation axis, and it is immersed
5 cm above the bottom plate. After proper calibration, it is possible to relate δh to the
resistance measurement Rw . We note that due to contamination, water conductivity
increases and Rw slowly decreases with time. Typical changes are of 1 % for a 1 hour
period. In order to have absolute values of surface disturbance amplitude, periodic
quiescent water level resistance measurements are performed.

Typical bifurcation study runs consist of two rotation rate ramps: increasing and
decreasing F . For increasing F , 24 min time series of wire gauge voltage Vw and
wall pressure pw are recorded. Near (respectively far from) the transitions values, F

increases by 0.4 Hz steps (respectively 0.8 Hz). For fixed F , each time series acquisition
starts from quiescent distilled water, with 8 min settling down time between each
rotation rate. The decreasing ramps start at the maximum F at which the increasing
ramp ends. In this case the time series are of 5min duration, without stopping the
motor between each rotation rate.

Finally, except for the ultrasonic data, both wire gauge and pressure signals are
transferred and stored on a computer, at a sampling rate of 200 Hz. For velocity
profile measurements of the base state the cylinder is completely filled with water,
in order to avoid the presence of bubbles in the flow. Indeed, even for runs with a
free surface at moderate F , bubbles are pulled down from the liquid/gas interface,
spiralling around the inner cylinder and are eventually ejected into the bulk of the
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fluid. Hollow glass spheres are added into the fluid as ultrasound tracer particles, of
mean density 0.75 g cm−3 and mean size 140 µm, at a volume fraction of 1 × 10−4.

3. Relevant dimensionless parameters
Our system is described by the group of eight parameters:

ρ, ν, g, σ, U, L, a, ho. (3.1)

Here, ρ and ν are the fluid density and kinematic viscosity respectively, g the
gravitational acceleration, and σ is the water/air interface surface tension. Finally,
U = aΩ and L = b − a are the typical velocity and length scales. For this group there
are three physical units (length, time and mass). The system is therefore described by
five independent dimensionless parameters:

(i) Reynolds number, Re, defined as the ratio of inertial and viscous forces.
The corresponding integral Reynolds number, Re =Ωa(b − a)/ν, is in the range
1.23 × 105–1.13 × 106. The flow is then strongly turbulent.

(ii) Capillary number, Ca, defined as the ratio of viscous and surface tension
forces: Ca = ρνU/σ . Taking σ ≈ 70 mN m−1, Ca varies in the range 9.1 × 10−3–
8.4 × 10−2. This is only a rough estimate as we have used the value for σ corresponding
to a clean water/air interface.

(iii) Froude number, Fr , defined as the ratio of inertial forces and gravity:
Fr =U 2/gL, which varies in the range 0.2–17.9. Notice that for Fr ∼ O(1) we expect
an interplay between inertia and gravity leading to wave-like behaviour.

(iv) The last two parameters are ho/L and a/L, giving aspect ratio ho/(b −a) = 1.8,
2.2 and 2.6 for ho = 34, 42 and 50 cm respectively, and radius ratio a/b = 0.128.

For our current setup only two parameters are independently controlled, F and ho.
Thus, we choose to describe the system with the parameters Re and ho/L.

4. Experimental results
4.1. Base-state characterization

In this section we present a characterization of the azimuthal component of the
basic flow. We focus on this component because it is the dominant one, the radial
component being at maximum about 10% of the azimuthal one. The axial component
has not been measured. Visual observations indicate that it is small too, except
perhaps very close to the inner cylinder and near the top surface. Thus, this is not
a full characterization of the basic state. In addition, in order to avoid the presence
of bubbles in the bulk of the fluid, the working volume is completely filled with
water during the velocimetry data acquisition. This is an estimation of only the bulk
azimuthal flow. By comparing the measured azimuthal component with surface profile
measurements we conclude that: (i) the azimuthal component is indeed dominant,
(ii) the mean angular momentum is constant in the bulk of the flow.

Below the critical value at which the bifurcation occurs, we observe that for a
large range of Reynolds numbers the mean flow has the symmetries of the driving
apparatus, as expected for highly turbulent flows (Frisch 1995). Indeed, the measured
mean azimuthal flow is axisymmetric and, moreover, the mean angular momentum is
constant in the bulk of the flow (see figure 2). This implies that except in the boun-
dary layers, the mean flow obeys v ≈ Ar−1θ̂ in cylindrical coordinates, where A is
constant and r is the cylindrical radius. A regression fit of the form vθ ∼ r−α , performed
with the data presented in figure 2 for r < 15 cm, gives α =0.97 ± 0.05. We remark
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Figure 2. Base-state mean azimuthal velocity profile in log10-log10 scale, obtained from 1024
profiles, for F = 5 Hz (Re ≈ 1.71 × 105). The continuous line shows the slope −1. The inset
shows the mean normalized angular momentum profile. To avoid the presence of bubbles
in the bulk of the fluid, the working volume is completely filled with water (no liquid/air
interface). Similar results were obtained for higher F , up to 30 Hz.

that near the inner cylinder a weak downward axial flow is also observed, although
we have not yet measured its magnitude. It is evidenced by the presence of spiral
vortices where air bubbles concentrate, which are eventually expelled into the bulk
once the vortex loses intensity.

Another characterization of the base state is given through analysis of the surface
profile. We present in figure 3(a) an image of the base-state free surface near the inner
cylinder, for ho = 50 cm and F = 20 Hz (Re = 6.85 × 105). Due to centrifugal forces, the
free surface deforms quite strongly, up to 5 cm at the inner cylinder. Away from the
boundaries, this deformation follows a power law behaviour η ∼ r−β , with β in
the range 1.9–2.0. Using Bernoulli’s law, it is possible to show that we should have
β ≈ 2α, as we indeed observe.

Even at low rotation rates, fluctuations in the flow cause the free surface to exhibit
small-amplitude waves. These waves are dominated by the fundamental surface
wave mode, which corresponds to an azimuthal wavenumber m =1. This is easily
observable by simple visual inspection, as indicated in figure 3(a) by an horizontal
white dashed line; a temporal Fourier analysis of δh confirms this. These surface
perturbations increase in amplitude as we increase F , although they do not present
long-time coherence (see figure 4a, c). The same can be said for the structure of the
free surface at the inner cylinder: this interface first presents turbulent fluctuations
and, as we increase F , spatially coherent perturbations are observed. The latter are
also dominated by an azimuthal wavenumber m =1, as shown in figure 3(a) by a
white arrow. They also increases in amplitude as we increase F and they do not have
long-time coherence. The m =1 resonant structure becomes observable at moderate
rotation rates, say above 10 Hz, that is for Re � 3.42 × 105. Notice that for F = 10 Hz,
Fr ≈ 1.65. Finally, we note that small-amplitude, short-wavelength surface spiral waves
are also observed, which are generated at the inner cylinder. These spiral waves are
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Figure 3. (a) Base-state surface profile for F = 20 Hz (Re ≈ 6.85 × 105); the surface profiles
are fitted to power laws η ∼ r−β . For the left- and right-hand side profiles, βL =2.0 ± 0.1 and
βR = 1.9 ± 0.1. The horizontal dashed line shows the height difference between opposite
azimuthal angles caused by small-amplitude m= 1 waves. The white arrow shows the
m= 1 spatial perturbation at the inner cylinder. (b) A gravity-wave snapshot for F =24Hz
(Re ≈ 8.22 × 105). The gravity wave corotates with the inner cylinder, counterclockwise viewed
from above, at ≈ 1.65Hz, with a peak-to-peak amplitude of about 12 cm. In both figures
ho = 50 cm.

not clearly visible in figure 3, but they are when the experiment is visualized from
above.

4.2. Gravity-wave bifurcation

Close to a critical value F +
c , where + indicates an increasing rotation rate ramp,

surface waves become stronger and more coherent. For the given setup, and
for ho = 50 cm, we have F +

c ≈ 25.2 Hz, which gives a critical Reynolds number
Re+

c ≈ 8.65 × 105 (for its definition see the discussion of figure 9a). We remark that
this value is sensitive to quite small geometrical perturbations, thus care must be
taken in order to ensure reproducibility. Above F +

c , a large-amplitude gravity-wave
state sets in (see figure 3b), typically after a bifurcation time tb, which has a statistical
nature as will be discussed below. Typically tb ∼ 7min, that is about 10000 inner
cylinder revolutions (tb is defined as the time at which the wave growth saturates).

In figure 4 we present representative time series of the normalized wave amplitude
δh/ho and normalized dynamic pressure pn = (p − 〈p〉)/prms, where 〈p〉 and prms

are the mean and root-mean-square (r.m.s.) pressure respectively. The left (resp.
right) panel shows time traces below (resp. above) the gravity-wave instability onset.
Below onset, the surface disturbance δh presents small-amplitude oscillations, with a
fluctuating envelope (figure 4a, c). The pressure signal is turbulent with fluctuations
that are of the order of the pressure r.m.s. value (figure 4e). The probability density
function (PDF) of both δh and pn are presented in figure 5. Below onset, these are
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Figure 4. Time traces of normalized quantities δh/ho (a–d) and pn = (p − 〈p〉)/prms (e, f ),
where prms is the root-mean-square pressure (in both cases prms ≈ 155 Pa). Time is in units of
the inner cylinder rotation period (τ = tF ). Left (a, c, e) and right (b, d, f ) sides correspond
to Re below and above instability onset respectively; Re = 7.65 × 105 < Re+

c (F = 22.34Hz),
and Re = 8.86 × 105 > Re+

c (F = 25.95Hz). In (c) and (d) we present shorter time traces, from
(a) and (b) respectively. Envelope curves are also shown in light grey in (c) and (d), which are
computed from the Hilbert transform of δh/ho.
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Figure 6. Power spectra of δh, below (a) and above (b) instability onset: Re =7.65 ×
105 <Re+

c , and Re = 1.07 × 106 > Re+
c respectively. The dominant wave frequency is denoted

fw , its harmonics by 2, 3, 4, etc. Other modes are also visible. Those identified by their
frequency values in the limit F → 0 are denoted f1, f2 and f3, which correspond to the lower
m= 2, 0 and 3 modes respectively. Finally, the inner cylinder rotation rate F is also visible.

relatively well fitted by Gaussian distributions, though deviations are detected in the
tails.

A typical time trace showing the bifurcation from the turbulent base state to the
gravity-wave state is presented in figure 4(b). For the wave state, δh undergoes strong
oscillations, as shown in figure 4(d). These oscillations are nonlinear, as evidenced
by the presence of harmonics in the temporal Fourier spectrum: at least up to nine
harmonics are clearly visible in the power spectrum of δh obtained for Re = 1.07 × 106

(figure 6). The envelope of δh in the wave state also fluctuates in time, probably
resulting from the flow’s underlying turbulence.

Typical Fourier spectra are presented in figure 6, below and above the instability
onset. A number of modes are present, and the dominant one is labelled fw , which
corresponds to the lowest m =1 mode. The difference between the main peaks is large.
For the data presented in figures 6(a) and 6(b), the energy ratio at fw is ≈ 6 × 10−4.
Other modes, labelled f1, f2 and f3, are identified by their behaviour in the limit
F → 0. They correspond to the lower m =2, 0 and 3 modes respectively.

A short time series of pn for the wave state is presented in figure 4(f ). It presents
oscillations too, also dominated by the free-surface wave frequency fw . The turbulent
fluctuations are, however, of the same order as these oscillations. This is also clear
from its probability distribution: the deviation from Gaussian is small, mainly due
to some additional flatness around p ≈ 〈p〉, as shown in figure 5(b). This is unlike
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Figure 7. Azimuthal velocity time traces δvθ = vθ − 〈vθ 〉 at r = ro, below (a) and above
(b) instability onset.

typical probability distributions of δh in the wave state, which deviate strongly from
Gaussian, resembling that of a sinusoidal function (see figure 5a).

It is important to stress that the observed instability occurs in the entire flow.
Both the surface and the bulk of the flow bifurcate from an axisymmetric-dominated
mean flow to a non-axisymmetric m = 1 flow. The change in the bulk velocity field
is seen by simple visual inspection, by following bubble paths. Although we have
not fully characterized the bifurcation in the bulk of the flow, we present in figure 7
representative velocity time traces obtained in a different, hybrid setup (see § 5), which
also presents this gravity-wave instability. These signals are obtained at the shortest
cylindrical radius, r = ro. Note that the represented signal is then the pure azimuthal
component. As expected, the oscillations observed in the gravity-wave state (figure 7b)
are of the same frequency as those observed in both δh and pn.

For any given rotation rate, temporal Fourier analysis of δh confirms that
the dominant frequency is the free-surface gravity-wave fundamental frequency,
obtained with F = 0, plus a small correction: fw = fo + δf (Re). Here, fo is given
by the dispersion relation for gravity waves in a fluid layer of finite height h

(Landau & Lifshitz 1987): ω2 = gk tanh kh, where g is the gravitational acceleration,
k the wavenumber, and ω =2πf . For F = 0, the fundamental mode is given by a
combination of Bessel and Newman cylindrical functions of azimuthal wavenumber
m = 1. Imposing the appropriate boundary conditions we obtain ko =8.057 m−1. For
the oscillations shown in figure 4(c), we have δf/fo ≈ 0.13. Obviously, one should
recover δf → 0 as Re → 0. In fact, our measurements show that δf follows a power
law behaviour for low Re, as shown in figure 8(b) below.



58 N. Mujica and D. P. Lathrop

0.04
(a) (b)

0.03

0.02

0.01

0

�
δ
h/

h o
�

2 en
v

δ
f/

f o

–0.2 0 0.2 0.4 0.6
∆

0.15

0.10

0.05

0 5 10

(× 105)Re

Figure 8. (a) Bifurcation diagram showing 〈δh/ho〉2
env versus ∆ = (Re − Re−

c )/Re−
c , for

koho = 2.74 (�), koho =3.38 (�), and koho = 4.03 (�). Open and solid symbols correspond
to increasing and decreasing ramps respectively. Solid lines show linear fits performed in the
range 0 � ∆ � 0.3. (b) δf/fo versus Re for different water levels ho (same symbols as in (a)).
Arrows indicate the approximate Re+

c values. The solid line is a fit δf/fo ∼ Reζ to all the data
with 0<Re < 7 × 105, which gives ζ = 0.62 ± 0.03.

Although it is not visible in figure 4(e), pressure Fourier spectra also have, in
general, a peak at the frequency fw , which is a signature of the coupling between the
pressure field and the oscillations at the free surface. For the data shown in figure 4(e),
this peak is about 20 dB above the background spectrum. It is worth mentioning that
although prms is approximately the same for the data shown in figures 4(e) and
4(f ), the Fourier-transform pressure peak amplitude ratio is roughly the same as the
normalized wave amplitude ratio obtained from the data presented in figure 4(a, b),
as indeed is expected.

The bifurcation diagrams for three different quiescent water levels are plotted
in figure 8(a). Here we present wave mean-squared amplitude 〈δh/ho〉2

env , versus
the rescaled control bifurcation parameter, ∆ =(Re − Re−

c )/Re−
c , where Re−

c is the
critical Re value obtained during a decreasing ramp at which the gravity-wave state
disappears. (We denote as 〈δh/ho〉env the average wave amplitude envelope, that is
the average of the light grey curves in figures 4c and 4d). For each ho, we observe
bistability and hysteresis. In addition, we observe that for small ∆, 〈δh/ho〉2

env depends
linearly on ∆. Our observations lead us to conclude that the Re values at which the
wave state appears depend on the level and form of turbulent fluctuations present
in the flow, as well on the distance from ∆ =0. As we control neither the level nor
form of turbulent fluctuations we stress that the evidence comes from the generic
behaviour we expect for a first-order-type bifurcation (see § 5). The role of fluctuations
is, however, less important in the opposite transition obtained during a decreasing
ramp, from the wave state to the base state. This is due to the very low probability of
having a turbulent fluctuation that would eliminate the high-amplitude gravity wave.
The downward transition is then due to the loss of stability of the wave state. The
reproducibility in the experimental determination of Re−

c is high, within ±1%. This
is unlike the determination of Re+

c , where a statistical study is necessary (see below).
Finally, both Re−

c and Re+
c also vary with ho (see table 1), which we believe is due
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ho (cm) Re−
c × 10−5 Re+

c × 10−5

34 7.11 ± 0.07 9.1 ± 0.3
42 6.85 ± 0.07 8.8 ± 0.3
50 6.47 ± 0.07 8.65 ± 0.1

Table 1. Values of Re−
c and Re+

c for different quiescent water levels ho.

to the three-dimensionality of the flow and, possibly, the importance of the axial
flow in the instability. However, in terms of the parameter ∆, ∆+

c ≈ 0.3 seems to be
independent of ho.

In figure 8(b) we show the Re dependence on the normalized surface-wave frequency
difference δf/fo. The dependence on Re is weak; for 0 <Re < 1 × 106, fw only increases
about 15% above fo. Below Re+

c , this difference scales as δf/fo ∼ Reζ , with ζ ≈ 0.62.
In this regime, the height dependence is completely determined by the finite height
dispersion relation presented previously. However, once the gravity waves set it, we
observe a stronger ho dependence. The fact that fw is a small correction from fo

allows us to conclude that the instability grows from a resonant mode of the free
surface.

5. Discussion and conclusions
The gravity-wave instability observed is clearly a first-order transition: it is not a

continuous one and it presents bistability and hysteresis. In the range 0<∆<∆+
c

the axisymmetric-dominated base-state flow needs a finite-amplitude perturbation in
order to bifurcate to the gravity-wave state. A natural question then, is to ask about
the role of turbulent fluctuations in the instability. In our system, the fundamental
resonant wave mode is always present. In order to grow it needs to get energy
from the background turbulent flow. We performed a preliminary statistical study
in the bistable region by realizing seven independent increasing rotation rate ramps,
over a smaller Re range in the vicinity of Re+

c . For each Re, we acquired data for
a fixed waiting time, tw = 24 min, that is about 35000 inner cylinder rotations. For
the same experimental parameters we sometimes observed the gravity-wave onset,
such that tb < tw , and sometimes we did not. The results are summarized in figure 9.
Figure 9(a) shows the wave-state probability, which serves precisely to define Re+

c :
for Re >Re+

c = 8.65 × 105 the measured probability of transiting to the m =1 gravity-
wave state approaches one. Figure 9(b) shows the histogram of normalized bifurcation
times τb for all the six Re values explored in this reduced range. There seems to be a
more probable bifurcation time around τb ≈ 10000, although the distribution is large.
A more detailed study of the role of fluctuations at the transition is in progress.

The results presented in figure 9 clearly support the fact that the transition is
driven by turbulent fluctuations. We can then speculate about the possibility of
describing such a transition by a low-dimensional dynamical system, as previously
done by Prigent et al. (2002). Assuming that the m =1 wave mode can be described
by a time-dependent complex amplitude A, one could try to guess the form of an
amplitude equation describing such instability, of the form dA/dt = −δF/δĀ, where
F is the associated Lyapunov potential (Cross & Hohenberg 1993; Prigent et al.
2003). Note that stationary solutions are then given by δF/δĀ = 0, and the stable
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Figure 9. (a) Measured wave-state probability, obtained from seven independent runs,
increasing Re over a reduced range, Re ≈ 815000–880000 (ho =50 cm). (b) Associated
normalized bifurcation time histogram (τb = tbF ), from which we obtain: median (τb) = 9576
and mean (τb) = 12330.
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Figure 10. Schematic of the expected generic Lyapunov potential F as function of wave
amplitude A, for different ranges of the bifurcation parameter: ε < 0 (a), 0< ε < εM (b),
εM < ε < ε+

c (c). At the Maxwell point, ε = εM , the two minima are equal. Above ε+
c , there are

two possibilities: either F recovers one minimum, such that the stable solution for the base
state (left minimum) and the unstable one (local maximum) disappear through a saddle-node
bifurcation, or F keeps the form shown in (c) in a way that the local minimum for the base
state never disappears, but only becomes shallower as ε increases.

ones correspond to the minima of F. Figure 10 shows the generic expected forms
of F, for different values of the bifurcation parameter ε. We remark that ε is
not necessarily equal to the control bifurcation parameter ∆; however, we expect
∆ =0 ⇒ ε = 0 and ∆ =∆+

c ⇒ ε = ε+
c . For ε < 0 there would be just one minimum

associated with the axisymmetric-dominated base state, with small m =1 perturbations
driven by turbulence. Between 0 <ε <ε+

c there should be two minima – one for each
stable state – which are equal at the Maxwell point ε = εM . Above ε+

c , the are two
possibilities: either F recovers one minimum, that is the stable solution for the base
state (left minimum) and the unstable one (local maximum) disappear through a
saddle-node bifurcation; or F keeps the form shown in figure 10(c) such that the
local minimum for the base state never disappears, but only becomes shallower as
we increase Re, as observed in pipe flow by Hof, Juel & Mullin (2003). In the second
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case, for a fixed noise strength, above some Re one would always ‘tunnel’ into the
other state, but with some statistics. In both cases, for ε > 0 the role of turbulence is
then to trigger the transition from one minimum to the other, passing above a barrier
height that becomes smaller and smaller as we increase ε. Finally, the asymmetry
of the effect of turbulent fluctuations on both transitions observed between the two
minima could then be understood if turbulence enters the dynamical equation for A

as multiplicative noise.
To end this discussion we present some additional results. We tested the robustness

of this instability by performing similar experiments in different geometries: (i) In
a smaller hybrid system, composed of an outer 40 cm diameter sphere and a
5.1 cm diameter coaxial inner cylinder we also observed an m =1 transition at
Rec ≈ 4 × 105, showing bistability and hysteresis. (ii) In the same Taylor–Couette setup
but with a larger diameter inner cylinder, of 16 cm radius, we did not observe such
transition. By increasing the viscosity ≈ 26 times that of water, using a temperature-
controlled water–glycerol mixture, an m =0 corotating gravity-wave state is observed
at Rec ≈ 6 × 104. Both experiments suggest the crucial importance of the inner-cylinder
turbulent boundary layer.

In conclusion, in this paper we report a hysteretic transition of a free-surface
Taylor–Couette flow, observed at a very high Reynolds number, Rec ∼ 106. The base
state is statistically axisymmetric respecting the symmetries of the system, whereas the
wave state is dominated by a mean flow of azimuthal number m =1. This wave state
grows from a resonant mode of the free surface, and it needs the correct perturbation
in form and amplitude in order to grow. The energy supply for this wave is probably
sourced from the background turbulent flow. We have shown that in the bistable
range of the control bifurcation parameter, the gravity wave transition is driven by
turbulent fluctuations and that its features can be understood by a generic Lyapunov
potential of a complex wave amplitude of the resonant m =1 mode. Finally, the
statistics at the transition are probably related to turbulent fluctuations and more
work is necessary to fully understand their role.
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